Topic 5 — Loops

5.1 Introduction

In Topics 1-4, you have learned how to use a wide range of useful programming constructs. In
this topic, you will discover how to make a program repeat sections of code automatically.

5.2 What you should already know

This topic assumes that you have already used and understood the following VB constructs:

input boxes, message boxes

variables
pre-defined functions
If... Then... Else

Select... Case

5.3 Learning Outcomes

After completing this topic, you should be able to:

implement fixed loops using For... Next

use a counter in a fixed loop

implement conditional loops using Do... Loop Until
use Random numbers

implement nested loops

compare Do... Until and Do... While loops

VB.NET for AQA Computing (Console) Page 51 of 80

© ZigZag Education 2010

Loops

5.4 Repetition using a fixed loop

So far, every program you have written starts at the beginning, executes each line once, then stops
at the end. If you want to repeat the program you have to click on the start icon to run it again. ltis
often useful in a program to be able to repeat a line or group of lines automatically.

To do this, you can use a FOR... NEXT loop.
Here is a simple example program that would benefit from a FOR... NEXT loop.
Enter this coding:

Sub Main()
' code to display 10 greetings on the screen
‘ by a not very good programmer
‘ who hasn’t been taught about FOR... NEXT loops

Console.WriteLine(“Have a nice day!”)
Console.WriteLine(“Have a nice day!”)
Console.WriteLine(“Have a nice day!”)
Console.WriteLine(“Have a nice day!”)
Console.WriteLine(“Have a nice day!”)
Console.WriteLine(“Have a nice day!”)
Console.WriteLine(“Have a nice day!”)
Console.WriteLine(“Have a nice day!”)
Console.WriteLine(“Have a nice day!”)
Console.WriteLine(“Have a nice day!”)

Console.ReadLine()
End Sub

Here is a second version of the program that uses a FOR... NEXT loop to cut down the amount of
coding required:

Sub Main()
' code to display 10 greetings on the screen
‘ by a much better programmer Alter the coding as shown and

‘using a FOR... NEXT | i
using oop @&)ﬂ run the program again.

Dim counter As Integer /_ It does exactly the same, but
=~ takes much less coding.

For counter=1To 10
Console.WriteLine(“Have a nice day!”)
Next

Console.ReadLine()
End Sub

A For .. Next loop is known as a
“fixed loop” because the
programmer decides how many
times the code is to be repeated.

VB.NET for AQA Computing (Console) Page 52 of 80 © ZigZag Education 2010

Loops

5.5 Repetition using For... Next

In this example, we will develop a program to display a repeated message on screen.

Stage 1 — Analysis

Program Specification Data Flow Diagram
Design, write and test a program to display the ‘Hello, Hello...’
message message

By
'

‘Hello, Hello, Hello ... (25 times)'.

Stage 2 — Design: User Interface

The output will be displayed in a cleared console window.

Stage 2 — Design: Pseudocode

Next, we design the list of steps (pseudocode) and then the coding for the command button:

Pseudocode Visual BASIC coding
1. Do the following 25 times For Counter = 1 to 25
2. Add the word ‘Hello’ to the list box Console.WriteLine(“Hello")
Next

Note that it is usual to
indent the code within the

Stage 3 — Implementation loop to improve readabilft;i/

e Start a new Visual BASIC Console Application project
e Enter the code for the program (declare a variable Counter as Integer)

Stage 4 — Testing
;‘tﬁ@)
= Run the program to make sure it works correctly.
N—

There is no need for a table of testing for a simple program like this.

Modifications (1)

Alter the coding so that it displays the message
Q; @ (1) ‘Goodbye’ 12 times
/g-.-..-:::-‘» (2) ‘I must work harder’ 200 times
= (3) ‘This is very easy’ 100 times

VB.NET for AQA Computing (Console) Page 53 of 80 © ZigZag Education 2010

Loops

Modifications (2)

The program would be much more useful if it was possible to make changes to the
message and the number of times it was displayed, without having to alter the
coding each time. This can be achieved by using variables.

Change the coding as follows: , ,
A string variable called message

will store the message, and an
integer variable called how_many
will store the number of repetitions

Sub Main()
'improved For... Next example

Dim counter As Integer
Dim message As String
Dim how_many As Integer

message = InputBox("Message required...”)
how_many = InputBox("How many repetitions?")

Instead of a fixed number here,
the loop will continue up to the
number stored in how_many

For counter =1 To how_many
Console.WriteLine (message)
Next

Console.ReadLine() Whatever string is stored in the variable called J

End Sub message will be displayed in the window

Testing (continued)

Now test the program thoroughly using normal, boundary and erroneous values for both
‘message’ and ‘how_many’.

. 'V“'ﬁ Stage 5 — Evaluation
@é{!’ﬁ As usual, you should:
e print out hard copies of the coding

e save your program
e write a brief evaluation of the program

@J Modifications (3)

) At the moment, this program can display any message over and over again, but it is
=, the same message on each line.

Can you adapt the program to produce displays like:

Tick Left Go home

Tock Right Now! Hint: you will
Tick Left need 2 (or 3)
Tock Right Go home lines of code
Tick Left Now! within the For...
Tock Right Next loop.

Tick Left Go home

Tock Right Now!

Tick Left

VB.NET for AQA Computing (Console) Page 54 of 80 © ZigZag Education 2010

Loops

5.6 Counting using For... Next 1 2 3
plahd wuw

The standard For... Next loop that we have used so far is of the format

For counter = 1 to maximum
Action
Next

Note that we have called the loop variable ‘counter’ (because that is what it does), but it can be
called anything you like. The following versions would work in exactly the same way:

For silly_name_for_a_variable = 1 to maximum
Action
Next

Fori=1 to maximum
Action
Next

The last of these (using i as the loop variable) is very common, but counter is a good, readable
variable name.

For... Next loops are an example of ‘fixed loops’. This is because the number of times the action
is executed is fixed in advance by the programmer, using the value of maximum.

Later, we will see that it is possible to construct loops where the number of times the action is
executed is NOT known in advance.

Example 1 — Simple Counting Program

Stage 1 — Analysis: Program Specification

Design, write and test a program to display 1, 2, 3, 4, 5... 99, 100.

1,2, 3,... 99 100
on the screen

B
Ll

Stage 1 — Analysis: Data Flow Diagram

Stage 2 — Design
We want the numbers displayed in a column in a cleared window.

Here is the list of steps (pseudocode) and then the coding for the command button:

/
Pseudocode Visual BASIC coding i’,fé‘zgg;;?b .
displayed, the
1. Do the following 100 times For counter = 1 to 100 curmenl vilue of
2. Display the counter in the window Console.WriteLine(counter) COUQIETSS
Next displayed instead
]

VB.NET for AQA Computing (Console) Page 55 of 80 © ZigZag Education 2010

Loops

Stage 3 - Implementation

Start a new Visual BASIC console application project
Enter the program code (declare a variable Counter as integer)

Stage 4 - Testing

Run the program to make sure it works correctly (it should produce a list of
numbers from 1 to 100 in the window).

There is no need for a table of testing for a simple program like this.

Example 2 — Experimenting with the Simple Counting Program

You are going to use the simple counting program as a template to experiment with For... Next
loops.

In each case below:
 replace the line of code For counter =1 To 100 with the modification suggested
e run the program
e note the results in a table like this:

Coding used Results
For counter =1 To 100 1234... 99100
Modification (1) For counter = 1 To 9999
Modification (2) For counter =1 To 100 Step 2
Modification (3) For counter = 2 To 100 Step 2
Modification (4) For counter = 0 To 100 Step 10

The final modification will

Modification (5) For counter =-10 To 10 Step 5 (I8 SGIARE0 ook
line of coding. Can you
Modification (6) For counter = 100 To 1 Step 5 e SaHt o tIrRAliBe

Hint: 0.5 is not an integer

Modification (7) For counter =0 To 5 Step 0.5

VB.NET for AQA Computing (Console) Page 56 of 80 © ZigZag Education 2010

Loops

Write the Visual BASIC coding of a For... Next loop to produce each of the following

A D
gﬁ_ﬁi lists of numbers:
(a) 3; 8, 8:12; 15, 18 .u.uus: 23, 36
(b) 0. 8,18, 27 e 99
(c) 10,9,8,7,6,5,4,3,2,1,0
(d) 0, 0.75, 1.5, 2.25, 3, 3.75, 4.5
(e) 50, 40, 30, 20, 10, 0, -10, -20, -30, -40, -50
(f) 1,4,9, 16, 25, 36, 49, 64, 81, 100 (hint: these are all numbers squared)

(@) 2,4, 8,16, 32, 64, 128, 256, 512, 1024, 2048 (hint: these are powers of 2)

Example 3 — General Purpose Counting Program
Stage 1 — Analysis

Data Flow Diagram

Program Specification (copy and complete...)

Design, write and test a program to Bmw
display any list of numbers, given the starting

number (lower limit), the final number (upper

limit) and the step size. e
Stage 2 - Design

You will use input boxes to enter the lower limit, upper limit and step sizes.

Here is a possible list of steps (pseudocode):

Copy and complete the coding yourself

Pseudocode Visual BASIC coding
1. Set up variables to store the 3 numbers Dim ...
and the loop counter Dim ...
Dim ...
Dim ...
2. Store the lower limit entered by the user lower = InputBox(.....)
3. Store the upper limit entered by the user upper = ...
4. Store the step size entered by the user stepsize = ...
5. Repeat the following, starting at lower limit, | For ... =...To ... stepsize ...
and going up to upper limit in steps of
stepsize
5.1. Display the counter Console.Writeline (...)
6. End of loop Next

VB.NET for AQA Computing (Console) Page 57 of 80 © ZigZag Education 2010

Loops

Stage 3 — Implementation

e Start a new Visual BASIC console application project
e Enter the program code

Stage 4 — Testing

Carry out systematic testing of the program, completing a table like this:

Inputs
Lower | Upper | Step Expected outputs Actual outputs Comment
limit limit | size
10 20 3 10, 13, 16, 19
(’;‘;’t;ma' 1000 [8000 [2500 [1000, 1250, 1500, 1750
10 0 -2 10, 8,6,4,2,0

Devise your own test data, covering a range of normal, boundary and erroneous data.
Write a short summary of your testing.

If all the test results were as expected, move on to stage 5. If not, go back and correct your coding
until it works correctly.

5“" Stages 5 — Evaluation
@A\‘r—’f} As usual, you should
e print out a hard copy of the coding

e save your program
e write a brief evaluation of the program

Example 4 — Multiplication Tables

This program uses a For .. Next loop, with its loop counter, to do something useful!

Stage 1 — Analysis

Data Flow Diagram

Program Specification (copy and complete ...)

Design, write and test a program to

display any multiplication table (chosen by the
user) intheform: 1 x5=5,2x5 =10 and so on
as faras 12x 5 =60

VB.NET for AQA Computing (Consale) Page 58 of 80 © ZigZag Education 2010

Loops

Stage 2 — Design 1%5=5
; ; 2x5=10
The program should use an input box to get the user’s choice of table, 3x5=15

and display the output in a window, like this:

Each line that

appears in the 2 X 5 = 10
output window

should look like the counter the multiplier the answer
this (made up of 5 the symbol X | chosen by the symbol = (counter x
parts): (123..) the user multiplier)

To do this, we need several variables:
e the counter (an integer)
e the multiplier (an integer supplied by the user)
e the answer (an integer calculated by the program)
e a string variable, which we'll call ‘message’, which stores together the 5 parts shown above
into a single message to display in each line of the list box

The line of code to assemble this message will look like:
message = counter & “ x ” & multiplier & “ =" & answer

Here is the list of steps (pseudocode):
Copy and complete the coding yourself

Pseudocode Visual BASIC coding
1. Set up variables to store the 3 numbers Dim ...
and the message Dim ...
Dim ...
Dim ...
2. Store the multiplier entered by the user multiplier = Input Box (...)
3. Repeat the following from 1 to 12 For... =...To... Step...
3.1. calculate the answer answer = counter * multiplier
3.2. assemble the message message =...
3.3. display the message Console.WriteLine(message)
4. Next Next

Stage 3 — Implementation

Start a new Visual BASIC console application project
e Enter the program code
e Save the completed project

"EF

A‘/

Stages 4 and 5 — Testing and Evaluation
Complete the testing and evaluation of the program in the usual way.

@ﬁ
2

VB.NET for AQA Computing (Console) Page 59 of 80 © ZigZag Education 2010

Loops

5.7 For... NEXT tasks

Choose one (or more) of the following program specifications, and design, implement and test a
program to fulfil the specification. Work through all the stages of the software development
process from analysis to evaluation for your chosen task.

Times Tables (advanced version)

A primary school teacher wants a program which will allow a pupil to type in
any whole number. The program will then display the relevant times table,
up to a maximum multiplier set by the pupil. The display should be in the
format:

5 times 1 equals 5
5 times 2 equals 10
5 times 3 equals 15, andsoon ...

Cost and weight calculator

A greengrocer needs a program which will allow him to type in the price of 1kg of
any item. The program should then display the cost of 0, 0.1, 0.2... up to 1.8,
1.9, 2.0 kg of the item.

The output might look something like this:

0 kg costs £0

0.1 kg costs £0.20

0.2 kg costs £0.40

0.3 kg costs £0.60, and so on ...

Cubic numbers

A mathematician wants a list of cubic numbers (1, 8, 27, 64, 125) starting and
finishing at any point on the list. The results should be displayed like this:

2 cubed =8
3 cubed = 27
4 cubed =64, and so on....

Quadratic function calculator

A pupil has been asked to draw a graph of the function y = 3x* + 4.

She needs a table of the values of the function between =5 and +5.

She is not sure about the step size between points, so wants the program to
allow her to choose any step size.

The results should be displayed like this:

1 >5>5>53> y=7
2 >>>>>>>> y=16
3 >>>>>>>> y=31 andsoon...

I mnn

X
X
X

VB.NET for AQA Computing (Console) Page 60 of 80 © ZigZag Education 2010

Loops

5.8 Do... Loop Until ﬂ

. 4
We have used For .. Next loops to repeat a section of program a fixed number of times. (Q;;
This is fine if we know how many times the section of program is to be repeated. 3

What about times when the number of repetitions is not known in advance?

For example, a quiz program might give the user repeated chances to get the answer correct. The
programmer doesn’t know in advance whether the user will get the question right first time, or take
2, 3, 4 or more attempts.

In this type of situation, the programmer needs to use another kind of loop. Visual BASIC provides
several other types of loop. We will use a type called Do... Loop Until.

The pattern (syntax) for this type of loop is very simple:

Do

line(s) of code

to be repeated
Loop Until condition

5.9 Do... Loop Until example program:

Start a new console application.

Enter the following program code.

Sub Main()
' generates a question to the user
' and waits for the correct answer

Dim user_answer As Integer
Dim correct_answer As Integer

correct_answer = 4

Do
user_answer = InputBox("What is 2 + 2?")
Loop Until user_answer = correct_answer

The program should keep
repeating the Input Box
line of code until the
user's answer is the same

MsgBox ("Well done!")
as the correct answer.

End Sub

Run the program. Test it with right and wrong answers.
Does it behave as predicted?
Adapt the program to ask
1. a different arithmetical question (e.g. What is 100 x 100?)

2. ageneral knowledge question (e.g. Who won MasterChef in 20107?)

VB.NET for AQA Computing (Console) Page 61 of 80 © ZigZag Education 2010

Loops

Improvements to the program

This simple program works fine, but there are some obvious changes which would improve it!

Improvement 1
When you give the wrong answer, the program doesn't tell you. If could be improved by
presenting a message which told the user to try again.

To do this, you need to add in the following line of code:

If user_answer <> correct_answer Then MsgBox “Wrong, try again!”

Can you work out where this line of code should go?
Edit it into your program, and check that it works.

Improvement 2
The program would be improved if it told you how many guesses you made before you got the
correct answer.

To do this, we need to include a counter in the loop.
Here is the pseudocode (the new sections are in bold).

Declare integer variables for the user’s answer and the correct answer
Declare an integer variable for the counter

Set the counter equal to zero

Set the correct answer equal to 4

Do -
5.1. Get the user’s answer to the question (What is 2 + 2) Igﬁ:g:e;zg::.ﬁ;? +1 J
5.2, Add one to the counter ~—

5.3. If the answer is not the correct answer, display ‘Wrong, try again’ message
6. Until user's answer is equal to the correct answer
7. Display message (Well done! You got that rightin)

R

Turn the pseudocode into VB, and adapt your Make sure you save this

program accordingly. program as we will use it
again in topic 5.11

Edit the changes into your program, and check that it works.

Improvement 3

The 3 improvement would be if the program could be made to ask a different question each
time, instead of always asking 2 + 2. To do this, we need to use VB’s random number
generator. See topic 5.10 Random Numbers.

VB.NET for AQA Computing (Console) Page 62 of 80 © ZigZag Education 2010

Loops

5.10 Random Numbers
Visual BASIC provides the programmer with a pre-defined function Rnd to generate random

numbers. Before we use it in the arithmetic tester program, we will use a simple program with a
For... Next loop to learn how the Rnd function operates.

A=
/® Start a new console application project.

"""" Enter the following program coding:

%=X
Sub Main()
' generates lists of random number

Dim number As Single
Dim counter As Integer

For counter=1 To 10
number = Rnd
Console.WriteLine (number)

Next

Console.ReadLine()
End Sub
Run this program.

Write down the list of 10 random numbers produced.
Note that the Rnd function produces random numbers between 0 and 1.

We would rather have random whole numbers between 1 and 10.
To do this, we need to do 3 things to the line number = Rnd.

e First, we need to multiply by 10 to produce a random real number between 0 and 10

» Then we need to ‘chop off’ the fraction part using the pre-defined function Int

e Finally, we need to add 1, otherwise the highest number will always be 9, as it is rounded
down by the Int function

Edit the line: number = Rnd
To: number = Int (Rnd * 10) + 1

Now run the program again. Write down the list of random numbers.
This time they should all be whole numbers between 1 and 10.
Stop the program.

Run the program again.
And again!

You will notice that it always generates the same list of ‘random’ numbers.

To make them really random, you need to add the keyword Randomize at the start of the program
(anywhere before the keyword Rnd).

VB.NET for AQA Computing (Console) Page 63 of 80 © ZigZag Education 2010

Loops

The coding for your random number generator should now look like this:

Sub Main()
' generates lists of random number
Dim number As Integer
Dim counter As Integer

You can now declare the
number to be an integer, as we
are only going to allow whole
numbers.
Randomize()
For counter=1To 10
number = Int(Rnd() * 10) + 1
Console.WriteLine(number)
Next You can adapt this line in a

Console.ReadLine() variety of ways to produce
End Sub other sets of random numbers.

For example, to produce:

random numbers between 1 and 20, change it to number = Int (Rnd * 20) + 1
random numbers between 51 and 60, change it to number = Int (Rnd * 10) + 51
random even numbers between 0 and 10, change it to number = 2 * Int (Rnd * 6)
Try experimenting with this line until you understand how it works. Sometimes it

takes a little thought to work out exactly what numbers to put in, so that you get the
right range and don’t miss out the highest or lowest number.

Test your program with the following lines of code.
In each case, make a note of the results, and explain what you get.

Line of code Results Explanation

number = Int(Rnd * 200) + 1

number = Int(Rnd * 20) + 1

number = Int(Rnd * 100) + 2000

number =2 * (Int(Rnd * 50) + 1)

number =2 " (Int(Rnd * 8) + 1)

Tasks:
¢ Modify your program so that when you click on the button it produces a [, -‘: \
single dice roll (a random number between 1 and 6). Hint: you won't '\.Sf-v-"’”“’
need a For... Next loop. ‘Vie _/ e
- .
" le "=
¢ Modify your program so that it produces a double dice roll, and displays , .0' !
the number on each dice and the total score. Hint: you will need to i iR e

generate 2 random numbers every time you click the button.

VB.NET for AQA Computing (Console) Page 64 of 80 © ZigZag Education 2010

Loops

5.11 Arithmetic Tester

We can now combine what we have learned about random numbers with our arithmetic tester
program from topic 5.9.

Here is the current version of the program:

Sub Main()
' generates a question to the user
' and waits for the correct answer

Dim user_answer, correct_answer As Integer
Dim counter As integer

counter=0
correct_answer =4

Do

user_answer = InputBox("What is 2 + 2?")

counter = counter + 1

If user_answer <> correct_answer Then MsgBox("Wrong, try again!")
Loop Until user_answer = correct_answer

MsgBox("Well done! You got that right in " & counter)
End Sub

&ﬁ.@ e Open this project

O/ﬁ ¢ Modify the coding as below (changes in bold):

=
Sub Main ()

' generates a random question to the user
' and waits for the correct answer

The variables first and second
hold the 2 random numbers to be

Dim user_answer, correct_answer As Inte :
used for the question.

Dim first, second as Integer

Dim counter as Integer

These lines generate the 2 j
Randomize random numbers for the question
first = Int(Rnd * 10) + 1

second = Int(Rnd * 10) + 1
counter =0
correct_answer = first + second

This displays the value of the variables first
and second, rather than the numbers 2 + 2

Do
user_answer = InputBox("What is ” & first & “ + ” & second & “?”)
counter = counter + 1
If user_answer <> correct_answer Then MsgBox(*"Wrong, try again!”)

Loop Until user_answer = correct_answer

MsgBox(“Well done! You took ” & counter & * tries”™)

End Sub

VB.NET for AQA Computing (Console) Page 65 of 80 © ZigZag Education 2010

Loops

One more modification!
The program only asks one random additional question each time it is run.

By adding 3 lines of code, we can make it give the user a series of (say) 6 questions.
We can do this by putting the whole of the middle section of the program inside a For... Next loop, like this:

Sub Main ()
' generates 6 random question to the user
" and waits for the correct answer

Di ¢ Bt This new variable here is the loop
1R EONTD0L ANSWarHeiilcder counter for the For... Next loop.
Dim first as Integer

Dim second as Integer

Dim counter as Integer
Dim question as Integer Here is the For... Next loop to
repeat the next section 6 times.

Dim user_answer As Integer : ’

Randomize
(For question=1To 6
first = Int(Rnd * 10) + 1
second = Int(Rnd * 10) + 1 This adds the Question number
counter=0 as a title to the Input Box.
correct_answer = first + second

Do
user_answer = InputBox("What is ” & first & “ + * & second & “?”, “Question” & question)
counter = counter + 1
If user_answer <> correct_answer Then MsgBox(“Wrong, try again!”)

Loop Until user_answer = correct_answer

MsgBox(“Well done! You took “ & counter & “ tries”)

Next
End Sub

You now have a loop within a loop. The technical term for this is nested loops.

%‘ Make the above changes to the coding.
&

= Save the revised project.

Carry out some thorough testing of your program, using normal, boundary and erroneous data.

Modify the program so that it:

asks multiplication questions rather than addition
uses random numbers between 1 and 12

asks 5 questions

displays ‘Well done - right first time!’ if the user gets it right first time
displays ‘Keep practising! You took X tries to get it right!’ otherwise

)
7

19| Test the program using normal, boundary and erroneous data.
@iﬁ\i’% Write an evaluation report.

VB.NET for AQA Computing (Console) Page 66 of 80 © ZigZag Education 2010

Loops

5.12 More examples using Do... Loop Until
Example 1 — Class lists
Design, write and test a program for a teacher. The program should prompt the user to enter any

list of names, which will be displayed on the screen. The program should count how many of these
names begins with the letter A, and display this information at the end of the list.

Stage 1 — Analysis: Data Flow Diagram

List of names

Names entered

at keyboard Number of As

Stage 2 — Design
The program will use input boxes to prompt for names to be entered.

Next, we design the list of steps (pseudocode)
and then the coding for the button’s click event:

Q: We will need to use a loop. Should it be a For... Next loop, or a Do... Loop Until?

A: As we don'’t know in advance how many names there will be in the list, we need to use a
Do... Loop Until.

Q: What condition will we use to stop the loop?

A: Ask the user to enter the word END after entering all the names. The loop can then continue
until name = “END”

Pseudocode Visual BASIC coding
1. Set a counter equal to zero counter=0
2. Do the following: Do
2.1 Prompt the user to enter a name name = InputBox(“Enter a name (or END)”)
2.2 Add the name to the list Console.WriteLine(name)
2.3 Extract the first letter of the name initial = Mid$(name,1,1)
2.4 If the first letter is A, add 1 to the counter | If initial = “A” Then counter = counter + 1
2.5 Until the user enters ‘END’ Loop Until name = “END”
3. Display the counter at the end of the list Console.WriteLine(counter)

Variables required:
counter (integer), name (string), initial (string)

Stage 3 — Implementation }J
o Start a new Visual BASIC console application project @)i];
¢ Enter the code for the program (declare all required variables) <o
e Save the project S

VB.NET for AQA Computing (Console) Page 67 of 80 © ZigZag Education 2010

Loops

Stage 4 — Testing

Test the program with the following sets of test data, and add some more of your

own.
Test data 1 Test data 2 Testdata 3

Andrew Alison Alison
Bill Albert alison
Cliff Bill Albert

Test data Doris Bert ahmed
Sarah Ahmed END
END end

Expected 1

answer
OK, but END

Comment should not be

shown

You should have noticed 3 problems with the program:

1. It doesn't count names which start with a lower case ‘a’

2. It adds the word END to the list
3. It doesn'’t stop when you enter ‘end’ in lower case

You should be able to modify your code to solve these problems.

Hints:

1. Use the function Ucase in step 3.4
2. Make step 3.2 conditional (If Ucase(name) <> “END” Then)
3. Make the end of loop condition into a complex condition using OR

oy

SNy

5?‘-"&""’1 Stage 5 — Evaluation
As usual, you should:

o print out hard copies of your coding
e save your completed program
e write a brief evaluation of the program

Example 2 — Password Protection

Design, write and test a program for a bank cash machine. The
program should prompt the user to enter their PIN. If the PIN is

correct, it should display ‘Welcome to the VB Bank’ (message 1).
If not, it should notify the user that their PIN was entered wrongly

(message 2), and let them try again, but only allow 3 tries.
If the user enters their PIN wrongly 3 times, they should be

warned that their card is being kept (message 3).

VB.NET for AQA Computing (Console)

Page 68 of 80

© ZigZag Education 2010

Loops

Stage 1 — Analysis: Data Flow Diagram

PIN entered at Appropriate
keyboard m message

v

Stage 2 — Design

The user will be prompted to enter their PIN through an Input Box. The appropriate message will
be displayed to the user using a Message Box.

First, we design the list of steps (pseudocode) and then the coding for the program:

We will use a Do... Loop Until, as the number of attempts the user makes is unknown in advance
by the programmer.

The condition to end the loop will be that the PIN is correct OR that the user has already had three
attempts.

Pseudocode Visual BASIC coding

1. set a counter equal to zero counter =0

2. store correct PIN correct_pin = 1347

3. do the following: Do

3.1 prompt the user to enter their PIN pin = InputBox(“Enter your PIN")

3.2 If PIN is correct display message(1) or | If pin = correct_pin then MsgBox(“Welcome to

else display message(2) VB Bank”) Else MsgBox (“PIN entered wrongly
~ try again”)

3.3 add 1 to the counter counter = counter + 1

4. until the PIN is correct or counter > 3 Loop Until (pin = correct_pin) Or (counter > 3)

5. If counter > 3 then display message(3) | If counter > 3 Then MsgBox("The card is being
kept for security”)

Variables required:

counter (integer)
pin (integer)
correct_ pin (integer)

Stage 3 — Implementation

e Start a new Visual BASIC console applications project
o Enter the code for the program (declare all required variables)
e Save the project

VB.NET for AQA Computing (Console) Page 69 of 80 © ZigZag Education 2010

Loops

@ Stage 4 - Testing

<=2 Create some suitable test data, and use it to test the program

Test data 1 Test data 2 Test data 3
1347 9999 1234
Test data 8888 4321
1347 9999
Comment

Stages 5 — Evaluation
As usual, you should:

¢ print out hard copies of your form and the coding
e save your program
e write a brief evaluation of the program

\ () Task: Modifying the program

N

Modify the program to:

allow 5 attempts at guessing the password

5.13 Other forms of Conditional Loop

There are 4 variations of conditional loop in Visual BASIC.

So far, we have only used the Do... Loop Until form of loop.

e prompt the user to enter a password (which could contain letters as well as numbers)
[]

In some high level languages, this is the only kind of conditional loop, and it is possible to manage

without the other kinds.

However, for completeness, here is a brief summary of all four types.

Type of loop Syntax Comments
Do Always executed at least once,
. Line(s) of code as condition is tested at the
E-o0p Wl to be repeated end; stops when the condition
Loop Until condition becomes true
Dﬁnl'g(';lgfggézon Only executed if the condition
Do Until... Loop is true, as it is tested at the

to be repeated
Loop

beginning

Do... Loop While

Do

Line(s) of code

to be repeated
Loop While condition

Loops while the condition is
true, and stops when the
condition becomes false

Do While... Loop

Do While condition
Line(s) of code
fo be repeated
Loop

Only executed while the
condition is true, as it is tested
at the beginning

Each type of loop has advantages and disadvantages. You can choose to use Do... Loop Until all

the time. However, it is useful to be able to use all four versions.

VB.NET for AQA Computing (Console)

Page 70 of 80

© ZigZag Education 2010

Loops

L‘E@ Task: Using different forms of Do... Loop

Modify the simple arithmetic tester program to use Do... Loop While

N~

Question:
Why is the Do Until or Do While loop not suitable for the arithmetic tester program?

Topic 5§ Summary
Well done! You have completed Topic 5.

In this topic, you have learned how to:

M Implement fixed loops using For... Next
M Use a counter in a fixed loop

Implement conditional loops using Do... Loop Until

|

M Use Random numbers
M Implement nested loops
1]

Compare Do... Until and Do... While loops

When you are sure you understand all of these items, you have completed
this short course in VB console programming.

You should now progress to Topics 6-10, which is based on VB Windows
Applications Programming.

VB.NET for AQA Computing (Console) Page 71 of 80 © ZigZag Education 2010

Answers and Solutions

Answers to Topic 2 exercises

2.7

(a)
(b)
(c)
(d)
(e)
()
(9)
(h)
0]
@
(k)
()

integer
string
single
Boolean
single
integer
Boolean
integer
string
single
single
string

(m) string

(n)

single

2.10

Format(average, ".000") Displays average to 3 decimal places

Format(average, "000.0") 3 digits before the point, 1 after

Format(average, "###.0") 3 digits before the point (if required), 1 after

Format(average, "fixed") Always showing 2 decimal places after the point
Format(average, "currency") 2 decimal places and a £ sign

Format(average, "percent”) Converts a fraction into a percentage (e.g. 0.5 becomes 50%)
Format(average, ".00\s") Displays 2 decimal places, and adds s at the end
Format(average, "\{00.00\}") Displays 2 digits before and after the point, and puts {} brackets

around the answer

2.12 (Practical Task)

Sub Main()
‘distance, speed and time program
'code for the start command button
'by A. Programmer on 06/01/10

Dim start_town, end_town As String
Dim distance, av_speed As Integer
Dim time_taken As Single

start_town = InputBox("Where are you travelling from?")

end_town = InputBox("Where are you going?")

distance = InputBox("How far is it (to the nearest km)?")

av_speed = InputBox("What is your average speed (to the nearest km/hour)")

time_taken = distance / av_speed

Console.WriteLine("From: " & start_town & VbCrLf & "To: " & end_town)
Console.WriteLine(""Distance: " & distance & " km" & VbCrLf & "Av. speed: " & av_speed & "km/hr"
& VbCrLf & "Time: " & Format(time_taken, "#0.0\hrs"))
Console.ReadLine()

End Sub
Note: If you need to split a long line like
this one, you can insert:
<space><underscore><space><return>;
this splits the line into two, but VB
continues fo treat it as a single line of code.
VB.NET for AQA Computing (Console) Page 72 of 80 © ZigZag Education 2010

Answers and Solutions

Answers to Topic 3 exercises

3.6

Lines of code required for the calculation in each of the programs:

1: volume = 3.14 * (radius * 2) * height

2. points = (3 * wins) + draws

3 bits = (breath * res) * (height * res) * bits_per_pixel
megabytes = bits / (8 * 1024 * 1024)

3.9 (Testing the LEN function)

Input string Output Comment

AAAA 4 4 characters

XX XX XX 8 8 characters, including the 2 spaces

Hello, world 12 12 characters, including the space and comma
ABC 123 I'E 1 dcigﬁgfsssg‘fg:r:;tsgigcluding letters, numeric
10 spaces 18 2 digits, 10 spaces, 6 characters

3.9 (String function programs - solution)

UCase

Dim string_in As String

Dim string_out As String
Console.Write(“Enter a string: “)
string_in = Console.ReadLine()
string_out = UCase(string_in)
Console.WriteLine(string_out)

LCase

Dim string_in As String

Dim string_out As String
Console.Write(“Enter a string: “)
string_in = Console.ReadLine()
string_out = LCase(string_in)
Console.WriteLine(string_out)

Asc

Dim character_in As String

Dim number_out As Integer
Console. Write(“Enter a character: *)
character_in = Console.ReadLing()
number_out = Asc(character_in)
Console. WriteLine(number_out)

Chr

Dim number_in As Integer

Dim character_out As String
Console Write(“"Enter a number: *)
number_in = Console.ReadLine()
character_out = Chr(number_in)
Censole WriteLine(character_out)

VB.NET for AQA Computing (Console)

Page 73 of 80

© ZigZag Education 2010

Answers and Solutions

3.10

Mid$ pre-defined function

Input string Coding used Output string Comment

Hello, world Mid$(string_in, 1, 1) H 1 character

Hello, world Mid$(string_in, 2, 1) e 1 character, starting at 2nd

Hello, world Mid$(string_in, 3, 1) I 1 character, starting at 3rd

Hello, world Mid$(string_in, 1, 2) He 2 characters, starting at 1st

Hello, world Mid$(string_in, 1, 3) Hel 3 characters, starting at 1st

Hello, world Mid$(string_in, 5, 4) o,w 4 characters (including the space),
starting at 5th

3.12 (Devising user IDs - solution)

Sub Main ()
'coding for the Password command button
'by A. Programmer on 19/04/10
Console.WriteLine("Password generator")
Console.Write("Press <Enter> to begin")
Console.ReadLine()
Dim name1, name2, year, colour, street, shoe_size, password As String

name1 = InputBox("Enter your first name")
name1 = Mid$(name1, 1, 1)

name2 = InputBox("Enter your surname")
name2 = Mid$(name2, 2, 1)

year = InputBox("Enter your birth year (e.g. 1993)")
year = Mid$(year, 3, 3)

colour = InputBox("Enter your favourite colour")
colour = Mid$(colour, 2, 2)

street = InputBox("Enter the name of the street where you live")
street = Mid$(street, 1, 3)

shoe_size = InputBox("Enter your shoe size")
password = name1 + name2 + year + colour + street + shoe_size
MsgBox("Your password is " & password)

End Sub

VB.NET for AQA Computing (Console) Page 74 of 80 © ZigZag Education 2010

Answers and Solutions

Answers to Topic 4 exercises

4.9 (Multiple Ifs — solution)
There are many possible solutions. Here is one version:

Sub Main ()
' coding for the OK command button
' displays an appropriate message for each grade letter entered
"and changes the form colour
"written by A. Programmer on 19/04/10

Dim Grade As String

Console. Write("Enter a grade (A to F)")
Grade = Console.ReadLine()

If Grade = "A" Then
Console.ForegroundColor() = ConsoleColor.Red
MsgBox(Grade & " means you got over 70%")
End If

If Grade = "B" Then
Console.ForegroundColor() = ConsoleColor.Blue
MsgBox(Grade & " means you got between 60% and 70%")
End If

If Grade = "C" Then
Console.ForegroundColor() = ConsoleColor.Green
MsgBox(Grade & " means you got between 50% and 60%")
End If

If Grade = "D" Then
Console.ForegroundColor() = ConsoleColor.Yellow
MsgBox(Grade & " means you got between 40% and 50%")
End If

If Grade = "F" Then
Console.ForegroundColor() = ConsoleColor.Black
MsgBox(Grade & " means that you got less than 40%")
End If
End Sub

4.10 (Variable table)

Variable name Variable type used to store

Max_mark integer What the test is out of (e.g. 80)

First name string Student’s first name (e.g. Albert)
Surname string Student’s surname (e.g. Einstein)
Mark integer Student’s actual mark (e.g. 63)
Percent single Student's percentage (e.g. 53.7)
Grade string Student’s grade (e.g. D)

Init string Student's first initial (e.g. A)
Display_name string Name to be displayed (e.g. A. Einstein)

VB.NET for AQA Computing (Console) Page 75 of 80

© ZigZag Education 2010

Answers and Solutions

4.11 (Mark_grader v2 — solution)

Select Case Num

Case Is >= 80
exam_grader = "A+"
Case ls>=70
exam_grader = "A"
Case Is >=60

exam_grader = "B"
Case Is >= 50
exam_grader = "C"

Case Is >=40
exam_grader = "D"
Case Else
exam_grader = "fail"
End Select

4.12 (Postage problem - solution)
There are many possible solutions. Here are 3 versions of the branching section of the code:
(a) using multiple Ifs with complex conditions:

' calculate cost
If weight < 60 Then cost = 0.28
If weight >= 60 And weight < 100 Then cost = 0.42
If weight >= 100 And weight < 150 Then cost = 0.60
... etc.
... etc.
If weight >= 1000 Then cost = 3.45 + (0.86 * (INT((weight - 1000)/250)) + 1)

(b) using nested Ifs:

' calculate cost
If weight < 60 Then
cost=0.28
Elself weight < 100 Then
cost=0.42
Elself weight < 150 Then
cost = 0.60
... etc.
... etc.
Else
cost = 3.45 + (0.86 * (INT((weight - 1000)/250)) + 1)
End If

(c) using Select Case

' calculate cost
Select Case weight
Case ls <60
cost=0.28
Case ls <100
cost = 0.42
Casels <150
cost = 0.60
... etc
... efc
Case Else
cost = 3.45 + (0.86 * (INT((weight - 1000)/250)) + 1)
End Select

VB.NET for AQA Computing (Console) Page 76 of 80 © ZigZag Education 2010

Answers and Solutions

Answers to Topic 5 exercises

5.5 (Modifications (1))

For Counter =1 1to 12
Console.WriteLine("Goodbye”)
Next

For Counter = 1 to 200
Console.WriteLine(“| must work harder”)
Next

For Counter =1 to 100
Console. WriteLine(“This is very easy”)
Next

5.5 (Modifications (3))

Sub Main ()
"improved For... Next example

Dim counter As Integer
Dim message1, message2 As String
Dim how_many As Integer

message1 = InputBox("Message required (first line)...")
message? = InputBox("Message required (second line)...")
how_many = InputBox("How many repetitions?")

For counter = 1 To how_many
Console.WriteLine(message1) ’%roduces) a blank line j
Console.WriteLine(message2)

Console WriteLine()

Next
End Sub

5.6 (For...next table)

Coding used Results
For counter =1 To 100 1234...99100
For counter = 1 To 9999 123 4. 9998 9999
For counter =1 To 100 Step 2 1357...9799
For counter =2 To 100 Step 2 2468...98100
For counter = 0 To 100 Step 10 01020 30... 90 100
For counter =-10 To 10 Step 5 -10-50510
For counter = 100 To 1 Step -5 100959085... 105
For counter =0 To 5 Step 0.5 005101520...4550

5.6 (Activity)
(a) Forcounter=3To 36 Step 3
(b) Forcounter=0 To 99 Step 9
(c) For counter=10 To O Step -1
(d) For counter =0 To 4.5 Step 0.75
(e) For counter =50 To -50 Step —10
() Forcounter=1To 10
Console. WriteLine(counter*2)
(g) Forcounter=1To 11
Console.WriteLine(2*counter)

VB.NET for AQA Computing (Console) Page 77 of 80 © ZigZag Education 2010

Answers and Solutions

5.6 (General purpose counting program — solution)

Dim lower, upper, step_size as Single
Dim counter as Single

lower = InputBox(“Enter the lower limit; “)
Upper = InputBox(“Enter the upper limit:)
Stepsize = InputBox("Enter the step size: “)

For counter = lower To upper Step step_size
Console WiteLine (counter)
Next

5.6 (Multiplication tables — solution)

Dim multiplier, counter, answer As Integer
Dim message As String

multiplier = InputBox(“Enter the multiplier: “)

For counter=1 To 12

answer = counter * multiplier

message = counter & “ x " & multiplier & * =" & answer
Console.WriteLine (message)

Next

5.7 (For... Next solutions)

Times Table (advanced version)

For counter = 1 To maximum

answer = counter * multiplier

message = multiplier & * times " & counter & “ equals " & answer
Console.WriteLine (message)

Next

Cost and weight calculator

For counter =0 To 2.0 Step 0.1

answer = counter * kilo_price

message = counter & “kg costs £" & answer
Console. WriteLine (message)

Next

Cubic numbers

For counter = first_num To last_num
answer = counter*3

message = counter & “ cubed =" & answer
Console.WriteLine (message)

Next

Quadratic function calculator
For counter = -5 To 5 Step step_size
answer = (3 * (counter"2)) + 4

message = ‘X =" & counter & * >>>>>>>>> y =" & answer
Console.WriteLine (message)
Next

VB.NET for AQA Computing (Console) Page 78 of 80 © ZigZag Education 2010

Answers and Solutions

5.9 (Improvements 1 and 2 — solution)
1

Sub Main ()
' generates a question to the user
" and waits for the correct answer

Dim user_answer As Integer
Dim correct_answer As Integer
Dim counter As Integer

counter=0

correct_answer =4
2

Do

user_answer = InputBox("What is 2 + 27")
counter = counter + 1

If user_answer <> correct_answer Then MsgBox(“Wrong, try again!”)

Loop Until user_answer = correct_answer

MsgBox ("You took ” & counter & “ tries to get that right”)

End Sub

5.10 (Random numbers tasks)

Single dice throw

Double dice throw

Sub Main ()
' generates a single dice throw

Dim number As Integer

Randomize

number = Int (Rnd * 6) + 1

Console.WriteLine (number)
End Sub

Sub Main ()
' generates a double dice throw

Dim dice1, dice2 As Integer
Dim answer As Integer

Randomize
dice1 = Int (Rnd *6) + 1
dice2 = Int (Rnd * 6) + 1
answer = dice1 + dice2
Console.WriteLine (dice1)
Console.WriteLine (dice2)
Console.WriteLine (answer)
End Sub

VB.NET for AQA Computing (Console)

Page 79 of 80 © ZigZag Education 2010

Answers and Solutions

5.11 (Arithmetic Tester v.3 — solution)

Sub Main ()
' generates 5 random question to the user

" and waits for the correct answer
change 6 to 5 for number of
questions

Dim user_answer As Integer
Dim correct_answer As Integer
Dim first as Integer

Dim second as Integer
Dim counter as Integer
Dim question as Integer

change 10 to 12 for maximum

) random number
Randomize

For queston=1To 5

first = Int(Rnd * 12) + 1

second = Int(Rnd * 12) + ldfjange + to * for multiplication

counter = 0 (and use x in the prompt)
e

correct_answer = first * second

Do
user_answer = InputBox("What is " & first & “ x ” & second & “?”, “Question” & question)
counter = counter + 1
If user_answer <> correct_answer Then MsgBox(“Wrong, try again!”)

Loop Until user_answer = correct_answer

Select Case counter you could use If... Then...

Casels 1 Else, but this is how i
MsgBox(“Well done — right first time!”) be dbne usﬁé Se?;lé;t ngge
Case Else :

MsgBox(“Well done! You took “ & counter & * tries”)
End Select
Next
End Sub

VB.NET for AQA Computing (Console) Page 80 of 80 © ZigZag Education 2010

