Decisions, Decisions... (Selection)

4.1 Introduction
In Topics 1-3, you learned the basics of VB programming — how to input and output data, and how

to use pre-defined functions to manipulate numbers and strings. In this topic, we will reinforce
these ideas, and explore how to develop programs that allow choices and alternatives.

4.2 What you should already know

This topic assumes that you have already used and understood the following VB constructs:

e basic input and output of data, and simple calculations
¢ declaring variables (single, string and integer)
e Mid$ and string concatenation

4.3 Learning Outcomes

After completing this topic, you should be able to:

e use If... Then... Else to branch a program
e use multiple Ifs and nested Ifs
e use Select... Case

4.4 Branching with If... Then... Else

So far, all the programs you have written follow the same list of steps from beginning to end,
whatever data you input. This limits the usefulness of the program. Imagine how boring a game
program would be if you had to make the same moves every time you ran it!

In this section, you will learn how to make programs that do different things depending on the data
that is entered. This means that you can write program with choices for the user, and with different
options and branches within them. To do this in Visual BASIC is very easy, as you will see.

Here are some examples of VB statements that use the keywords IF, THEN and ELSE.

If Number < 0 Then answer = “That was a negative number!”

If Reply = “No” Then MsgBox (“Are you sure?”)

If Salary > 5000 Then Pay = Salary — Tax Else Pay = Salary

If Guess = Correct_Answer Then MsgBox (“Well Done!”) Else MsgBox (“Wrong — try again!”)

If warning = true Then There are 3 basic patterns:

turn_off_heating
turn_on_warning_lights
End If

If condition Then action
If condition Then action Else alternative action

If condition Then
action 1
action 2
etc.

End If

VB.NET for AQA Computing (Consocle) Page 37 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

We will use the following comparison operators in this symbol | meaning
section:
= greater than
< less than
S greater than or equal to
<= less than or equal to
= equal to
<> not equal to

4.5 If... Then... Else — example

Credit Limit

The problem:
When you try to take money out of an ATM (Automatic Teller Machine, commonly called a cash
dispenser ot ‘hole in the wall’), you are only allowed to withdraw cash up to your credit limit.

For example, if your credit limit is £100, and you try to withdraw £50, then it should work fine.
However, if you try to withdraw £150, you will not be allowed to,
and a message will appear on the screen advising you that this is
over your credit limit.

Stage 1 — Analysis: Program specification

Design, write and test a program to:

take a number entered by the user

compare it with a credit limit (100)

report ‘withdrawal approved’ if the number is up to 100
report ‘over the credit limit’ if the number is over 100

Stage 1 — Analysis: Data Flow Diagram

‘withdrawal approved” or
“over credit limit” message
any number /—_\ on screen as appropriate

Stage 2 — Design: User interface

We will need a title, then an on-screen prompt for the user’s input. We will use a message box to
display the feedback message.

Stage 2 — Design: Pseudocode
Here is a list of steps (pseudocode) for what this program has to do:

. display a title “VB ATM”

. prompt the user to enter the amount to be withdrawn

. store the number entered by the user

. if it is less than or equal to 100, display the approved message, otherwise display the
warning message

BWN -

There is only one variable required — a numeric variable to store the amount entered by the user.
As this could be something like 23.50, it needs to be a Single rather than an Integer.

VB.NET for AQA Computing (Console) Page 38 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

Stage 3 — Implementation: Coding

e
&

N

Enter the coding for the program, as below:

Sub Main()
' coding for the ATM program
' warns the user if the amount is over the credit limit (£100)
' written by A. Programmer on 09/04/10

Dim Number as Single

Console.WriteLine(“VB ATM Program”)
Console.WriteLine()

Console.Write(“Enter the amount you want to withdraw: £”)
Number = Console.ReadLine()

If Number <= 100 Then MsgBox (“withdrawal approved”) Else _
MsgBox (Number & “ is over you credit limit”)
End Sub f

If a line of code is too long to fit on the screen, you can split it using an underscore symbol,
then pressing return, but make sure there is a space before and after the underscore.

VB will treat the line of code as a single statement, even though it is displayed as two lines.

A 244 Stage 4 - Testing
A

/1‘ Devise some test data. This should include:

¢ some normal data, like
20 (clearly under the limit)
120 (clearly over the limit)

e some boundary data, like
99.99 (just under the limit)
100.00 (exactly on the limit)
100.01 (just over the limit)

e some erroneous data, like
-5 (a negative number)
999999.9999 (a ridiculously large number)
A (a letter when a number is expected)

Run the program, using your test data, and record the results in a table.

ggx‘?‘q Stage 5 — Evaluation

@A\\;—_ \ /% Wri'te a brie‘f. evaluation of the program in terms of its effectiveness, usability and
maintainability.

Extra task
Modify the ATM program so that it asks your age, and gives you the message ‘You

are too young to drive’ or “You can learn to drive’ as appropriate. E

VB.NET for AQA Computing (Console) Page 39 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

4.6 Multiple Ifs — example

Lucky Winner

The problem: A program is required that will select a suitable prize,
depending on which number between 1 and 5 is entered by the user.

Stage 1 — Analysis: Program specification
Design, write and test a program to:

o prompt the user to enter a number between 1 and 5
o store the number
o output an appropriate message: Enter a 1 -> “You have won a colour TV”

Enter a 2 -> “You have won a mobile phone”

etc. (No prize if the number is not between 1 and 5.)

Stage 1 — Analysis: Data Flow Diagram

appropriate message
any number m on screen

Stage 2 — Design: User Interface
There will be an on-screen prompt for data entry, and a message box to display the response.

Stage 2 — Design: Pseudocode
Here are the steps for the program.

display a title

prompt the user to enter a number between 1 and 5

store the number entered by the user

if the number is 1, display “You have won a colour TV’

if the number is 2, display “You have won a mobile phone”
etc.

GO wWN =

There is only one variable required — a numeric variable to store the number entered by the user.
As this must be 1, 2, 3, 4 or 5, it should be declared as an Integer.

VB.NET for AQA Computing (Console) Page 40 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

Stage 3 — Implementation

é‘! @ Create a new VB Console Application, and name it Prize Draw
o=

Enter the coding for the program, as below:

Sub Main()
' coding for the luck winner program
' displays an appropriate message for each possible number entered
' written by A. Programmer on 09/04/10

Dim Number As Integer

Console.WriteLine(“Prize Draw Program”)
Console.WriteLine()

Console.Write(“Enter a whole number in the range 1 to 5: ”)
Number = Console.ReadLine()

If Number = 1 Then MsgBox (Number & “ wins you a colour TV”)

If Number = 2 Then MsgBox (Number & “ wins you a mobile phone”)

If Number = 3 Then MsgBox (Number & “ wins you a holiday in Spain”)
If Number = 4 Then MsgBox (Number & “ wins you 10p”)

If Number = 5 Then MsgBox (Number & “ wins you a day at the beach”)

If Number <1 Then MsgBox (Number & “ is too small”)
If Number > 5 Then MsgBox (Number & “ is too large”)
End Sub

Save the program.

E‘?A’?’ﬂ Stage 4 — Testing

@A! 4] Devise some test data. This should include:
e some normal data
e some boundary data
e some erroneous data

W

Run the program, using your test data, and record the results in a table.

?LE{?& Stage 5 — Evaluation

@A\\;ﬁ As usual, you should:
e print out hard copies of your coding
e save your program

e write a brief evaluation of the program in terms of its effectiveness, usability and
maintainability

VB.NET for AQA Computing (Console) Page 41 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

4.7 Conditional statements with multiple actions

Usually, a conditional where multiple actions are If condition Then
statement is of the format: required, a conditional Action 1
.. _ statement is of the format: Action 2
If condition Then action Action 3 (and so on)
End If

Properties such as the console colour can also be changed during the running of the program, as
the next example shows.

Lucky Winner v2 (with colours)

As well as the program displaying the prize that has been won, we want the colour of the console
to change.

All we need to do is change the coding, so that each If statement has 2 actions to be performed —
changing the text colour and displaying the appropriate message.

Sub Main()

' coding for the prize draw program (version 2)

" displays an appropriate message for each number
' and changes the background and text colours

" written by A. Programmer on 09/04/10

Dim Number As Integer

onsole.BackgroundColor() = ConsoleColor.Gray
Console.Clear()
Console.ForegroundColor() = ConsoleColor.DarkBlu

This section of code sets the
background colour to grey, and the
foreground (text) colour to dark blue.

Console.WriteLine("Lucky
Console.WriteLine()

inner Program")

Console Write("Enter a whole number in the range 1to 5: ")
Number = Console.ReadLine()

umber = 1 Then
Console.ForegroundColor() = ConsoleColor.Blue
Console Write(Number & " wins you a colour TV")
Console.ReadLine()

This section changes the text colour
to blue if the number chosen by the
user is 1. The background colour will (
remain unchanged.

If Number =2 Then

Similar code will be required for
number =2, 3, 4 or 5.

If Number < 1 Then MsgBox(Number & " is too small")
If Number > & Then MsgBox(Number & " is too large")
End Sub

Don’t start coding this program yet!

It is possible in VB to use an existing project as the basis for a new project. You will learn how to
do this in Topic 4.8, which means you won't need to start from scratch when implementing Lucky
Winner (v2).

VB.NET for AQA Computing (Console) Page 42 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

4.8 Exporting a template

Unfortunately, VB doesn’t allow you to simply change a program and save it under a new name.
Instead, you need to save the original program as a template, then build the new program from the
template. Here is how to do it:

open your Prize Draw project

choose File ... Export Template

in the Template wizard, choose Project template, then click Next
change the template name to Lucky_winner, then Finish

A template has now been created called Lucky_winner. | : j
The template contains the coding that you L
created for the Prize_draw program.

Lucky_Winner.zip
it 20KB

NewProject T =)

-
{ Templates: 0

NOW Start a new Visual Studio installed templates

project, but select ' e = = = i
the Lucky Winner | “’ﬁ o= i‘r 3 J

Windows Class Library Console My Mowie Screen Saver
tem p late from the . Application Application Collecti... Starter Kit

list of templates... ;
\My Templates
\ :f\I — - —

——y :1
i‘ ' a ol P"a ﬂm + nu -;_“‘}
o and Ca” lt function_te... output_for... Random_nu... String_func... iz?nrgra?er;li?:e
LuckyWinner2 by
changing the default - ==
! <Ho description available>
name here:

I
! Mame: String_function_tester 1

i l oK j[Cancel] |

l\ Use the template technique to create version 2 of the Prize Draw program (as
;L@ in topic 4.7).
\Z/

5
T
35—

Decide and choose text colours to be displayed for each number chosen by the
user.

(note: when you enter ConsoleColor. The development environment should give you a drop down
list of available colours to choose from.)

Test to see that it correctly changes the console and text colours.

4.9 Practical task using Multiple Ifs
Use your ‘lucky winner’ program template to fulfil this specification:

Design, implement and test a program that asks the user to enter a grade
(A, B, C, D or F), and displays messages like ‘A means you got over 70%’,
‘B means you got between 60% and 70%’, and so on. The text should
change colour depending on the grade entered.

VB.NET for AQA Computing (Console) Page 43 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

4.10 Test Grader Program (,.._\

gl
Example: Test Mark Grader ‘\! . 3 :)

"

The problem: A program is required that could be used to assign grades ,.C\,:_'_{ (o
to test marks automatically. Over 80% is an A+, over 70% is an A, over (\“‘{e‘-' /l’Uﬁj
60% is a B, over 50% is a C, over 45% is a D, and less than 45% is a fail. \| s &) '
The program should work for any test, whatever the maximum score. It /k = g
should display a ‘certificate’ on screen, showing the student’s name (in the G
form ‘A. Einstein’), the possible mark, student’s mark, percentage and ‘ S
grade. r—-“—)

Stage 1 — Analysis: Program specification

Design, write and test a program to:
o prompt the user to enter the highest possible score for an exam (e.g. 80)
prompt the user to enter a student’'s name (first name and surname)
prompt the user to enter the student’s mark (e.g. 63)
calculate the percentage mark
display a message giving the student’s name, possible and actual marks, percentage and
grade

Stage 1 — Analysis: Data Flow Diagram

exam out of .. ; .
\ message on screen including
student name, possible mark
me —> ! 4
Stadentina actual mark, percentage mark and

student mark / grade

Stage 2 - Design: User Interface

The user interface will use input boxes for data entry, and display the “certificate” in a cleared
console window.

Stage 2 - Design: Pseudocode for the program
Here is a list of steps from the program:

prompt for and store the possible score for the exam

prompt for and store the student’s first name

prompt for and store the student’s surname

prompt for and store the student’s mark

calculate the percentage mark

calculate the grade

extract the initial letter from the first name

concatenate initial and surname

display the name, possible and actual marks, percentage and grade in a cleared window

CoOoNOOREWN

The program will use several variables. 1t is useful to write them down as a table.

VB.NET for AQA Computing (Console) Page 44 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

Complete the table by assigning the most appropriate variable type.

Variable name Variable type Used to store

Max_mark What the test is out of (e.g. 80)
First_name Student’s first name (e.g. Albert)
Surname Student’s surname (e.g. Einstein)
Mark Student’s actual mark (e.g. 63)
Percent Student’s percentage (e.g. 53.7)
Grade Student’s grade (e.g. D)

Init Student’s first initial (e.g. A)
Display_name Name to be displayed (e.g. A. Einstein)

g? | Convert these into variable declarations, and the pseudocode into VB code. Some of

@A\\;_ﬁ this has been done, to give you a start.

First, the initial comment lines and variable declarations ...

Sub Main()
' exam certificate program
" by A. Programmer 16/04/10

' variable declarations Note use of a comment line to
DLTcmax—ma’k As Integer indicate the purpose of the code.

Next, get the user inputs using input boxes and store them in variables (pseudocode steps 1 to 4).

' store user inputs
max_mark = MsgBox(“Enter the maximum mark for this exam”)
... etc.

Next, code to calculate the percentage mark (pseudocode step 5) ...

' calculate percentage mark
percent = (mark / max_mark) * 100

Step 6 is the calculation of the grade from the percentage, using a series of If statements (some
with complex conditions).

' calculate grade
If percent >= 80 Then grade = "A+"
If percent >= 70 And percent < 80 Then grade = "A"
etc.

Steps 7 and 8 use Mid$ and string concatenation to create the display name ...

' create display name
init = Mid$(first_name, 1, 1)
display_name = init + “. ” + surname

VB.NET for AQA Computing (Console) Page 45 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)
Finally, step 9 displays the results. Use your previous experience to display the information in
cleared window — you may want a title at the top, and to use colours.

' display message in format A.Einstein, 42/60, 70%, grade A

Stage 3 — Implementation

e Start a new VB Console Application
o Enter the coding (as above, but completed)

&l Stage 4 - Testing

% A\& _ﬁj Devise some test data.

This should include:

e some normal data

e some boundary data
e some erroneous data

Run the program, using your test data, and record the results in a table.

& FaaV. &
@ Stége 5 — Evaluation . . |
@A,_jj Print out your program and write an evaluation report in the usual way.

4.11 Branching with CASE

If... Then... Else is not the only way to implement branching in a VB program. There are two
alternatives which you should know about. The choice of which method to use is up to you as the
programmer. Itis partly a matter of style, but one method may have particular advantages,
depending on the context.

Your coding for the previous example should have looked something like this:

Sub Main()
' exam certificate program
' by A. Programmer 16/04/10

' variable declarations

Dim max_mark, mark As Integer

Dim first_name, surname, grade, init, display_name As String
Dim percent As Single

' store user inputs

max_mark = InputBox("Enter the maximum mark for this exam")
first_name = InputBox("Enter the candidate’s first name")
surname = InputBox("Enter the candidate's surname")

mark = InputBox("Enter the candidate's mark")

VB.NET for AQA Computing (Console) Page 46 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

' calculate percentage mark
percent = (mark / max_mark) * 100

' calculate grade

If percent >= 80 Then grade = "A+"

If percent >= 70 And percent < 80 Then grade = "A"
If percent >= 60 And percent < 70 Then grade = "B"
If percent >= 50 And percent < 60 Then grade = "C"
If percent >= 40 And percent < 50 Then grade = "D"
If percent < 40 Then grade = "fail"

' create display name
init = Mid$(first_name, 1, 1)
display_name = init + . " + surname

' display message in format A.Einstein, 42/60, 70%, grade A
Console.BackgroundColor() = ConsoleColor.Gray
Console.Clear() Note use of _
Console.ForegroundColor() = ConsoleColor.DarkBlue underscore to split
Console.WriteLine() this long line

Console.WriteLine("AQA AS Level Computing")

Console.WriteLine(display_name & ", " & mark & "/" & max_mark & "," & _
Format(percent, ".0") & "%, " & "grade " & grade)

Console.ReadLine()

Format(percent, “.0")
displays the answer as a
percentage to 1 decimal
place

End Sub

This method of coding the solution works perfectly well, but it is
inefficient. Suppose the value of percent is 85.

The first If statement is ‘triggered’, so grade is assigned the value ‘A+'.
However, the program continues to execute each of the other If statements in turn, although none
of them will be triggered. This is wasteful of processor time.

There are two alternative methods, each of which is more efficient: these are
e Method 1: using ‘nested ifs’
o Method 2: using Select... Case

Method 1: Using Nested Ifs (Elself) I thie case, If pergent is B5

If percent >= 80 Then then the first If is triggered
grade ="A4+" as before. None of the
Elself percent >= 70 Then Elself statements will be
grade ="A" executed.
Elself percent >= 60 Then .)
grade = "B" Similarly, for other inputs,
Elself percent >= 50 Then once a statement is
grade = "C" triggered, the following
Elself percent >= 40 Then conditions do not need to be
grade = “D" tested.
Else
grade = "fail"
End If

Note also that complex conditions are not required. However, using Elself is not quite so readable,
and it is sometimes more tricky to debug the program, as the logic is more complex.

VB.NET for AQA Computing (Console) Page 47 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

Method 2: Using Select Case
ng ghas In this case, if percent is 85,

then the first Case is
triggered and all other
Cases are ignored.

' calculate grade

Select Case percent
Case Is >= 80
grade = "A+"
Casels>=70
grade = "A"
Case ls >=60
grade ="B"
Case Is >=50
grade ="C"
Case Is >= 40
Grade = “D”
Case Else
grade = “fail”

End Select

Similarly for other inputs,
once a statement is
triggered, the following
conditions do not need to be
tested.

Again, note that complex conditions are not required. Case Else is used at the end to catch any
values of percent below 40.

Select Case is more readable that using nested Ifs, and is also very efficient. Usually Select Case
is the best method for multi-way branching in a program.

More efficient Mark Grader programs
A& .
o Create a template from Mark_grader_v1 (topic 4.10)
e Use it to create Mark_grader_v2, using Select Case

=

Some notes on Select Case

The general format of a Select Case in VB is:

Select Case variable
Case value1

action to be executed if value 1 matches variable
Case value?

action to be executed if value 2 matches variable

é:else Else
action to be executed if variable does not match any of the values
End Select

Where:
e variable is an actual variable or some other expression which can be evaluated
e valuel, value 2, etc. are values of the same type as variable (values can be strings or
numbers)

VB.NET for AQA Computing (Console) Page 48 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

Examples:

Select Case Code_letter

Case ‘A’ : P .
. o In this example, variable is
Msglf_'!o?f(You have chosen option A”) a String variable called
Gase B Code_letter
MsgBox(“You have chosen option B") -
Case Else
MsgBox(“Sorry, that is not a valid option”)
End Select
Select Case Code_number
Case 1 In this example, variable is a
MsgBox(Code_number & “ is too small”) numeric variable called
Case 2 to 19 Code_number — 3 different
Mschx(Code_number & “isin range") types of condition are illustrated
Casels > 19
MsgBox(Code_number & “ is too big")
End Select
Select Case Code _letter="A" . . ;
CasE {Fils In this example, v_anable is a
. : 5 Boolean expression
MsgBox(“You have chosen option A”) P o
(an expression which is either

Case false) ol
MsgBox(“You have chosen option B”) \\rue orfalse)

End Select

4.12 Practical Task using Select Case

Design, implement and test a program to calculate the cost of posting a

package by first class mail, based on the following table:
Weight up to Cost l

60g 28p

100g 42p

1509 60p

200g 75p

250g 88p

300g £1.01

350g £1.15

400g £1.33

450g £1.50

5009 £1.68

600g £2.03

7009 £2.38

750g £2.55

800g £2.73

900g £3.10

1000g £3.45

each extra 2509 add 86p

VB.NET for AQA Computing (Console) Page 49 of 80 © ZigZag Education 2010

Decisions, Decisions... (Selection)

You should provide evidence of all the stages of development:

Analysis (program specification and data flow diagram)

Design (user interface and pseudocode)

Implementation (coding)

Testing (results from normal, boundary and erroneous test data)
Documentation (user and technical guides)

Evaluation

Topic 4 Summary
Well done! You have completed Topic 4.

In this topic, you have learned (or revised) how to:

M Branch using If... Then... Else
M Use multiple and nested Ifs

M Use Select... Case

Check all the items on this list. If you are not sure, look back through this section to remind
yourself.

When you are sure you understand all of these items, you are ready to
continue with the next topic.

VB.NET for AQA Computing (Console) Page 50 of 80 © ZigZag Education 2010

