
Page 1 of 4 © ZigZag Education 2014

Using Selection

‘If’ Statements (Selection)
‘If’ statements are fundamental in all programming languages; they allow selection. In other words, they allow
alternative paths in the program to be followed or avoided. The principles of an ‘if’ statement are the same in all
languages; only the syntax differs. ‘If’ statements use operators to determine if a condition is true or false. Operators
include < (less than), <= (less than or equal to), = (equal to), > (greater than) and >= (greater than or equal to). The
logic of an ‘if’ statement is shown below:

 If [this condition is true] Then
 Do this code
 End If

Open Notepad or Notepad++ and type the following code (pay attention to the indentation used). Once the code has
been typed up, compile and run the program.

Imports System.Console

Public Class UsingIFS

 Shared Sub Main()

WriteLine(“Enter a number”)

 Dim Y As Integer

 Y = ReadLine()

 If Y > 3 Then

 WriteLine(“Hello World")

 End If

 End Sub

End Class

A second (and more) condition(s) can be added using the keyword AND. When using the AND keyword, both
conditions must be true before the code contained in the ‘if’ statement will run. The keyword OR can be used instead
to make the code execute if either of two (or more) conditions is true. Amend the previous code so that it includes a
second condition; compile and run the code to ensure it works as expected. The syntax for using multiple conditions
is shown below:

 If Y > 3 AND Y < 7 Then

Program Output:

Test Your Skills

 Amend the previous code so that the program writes ‘Hello World’ if the number is between 5 and 10, and
‘Hello Universe’ if the number is between 11 and 20.

Page 2 of 4 © ZigZag Education 2014

If, ElseIf and Else
ElseIf can be used to extend an ‘if’ statement (by adding additional conditions to check if the previous condition
returns false). This method is more efficient than writing multiple separate ‘if’ statements. The Else keyword can be
used to catch any other possibilities if all conditions return false. The logic of an extended ‘if’ statement is shown
below:

 If [this condition is true] Then
 Do this code
 ElseIf [this condition is true] Then
 Do this code
 Else
 If all conditions are false do this code
 End If

Open Notepad or Notepad++ and type the following code (pay attention to the indentation used). Once the code has
been typed up, compile and run the program. Note that the instruction Main() will call Sub Main() again, in other
words looping the program (this is not ideal, but it works). MsgBox is a simple message box that is displayed to the
user.

Imports System.Console

Public Class UsingIFS

 Shared Sub Main()

 WriteLine(“Enter a number”)

 Dim y As Integer

 y = ReadLine()

 If y > 3 Then

 MsgBox("This is bigger than 3")

 ElseIf y > 6 Then

 MsgBox("This is bigger than 6")

 ElseIf y > 10 Then

 MsgBox("This is bigger than 10")

 Else

 MsgBox("Any other response")

 End If

 Main()

 End Sub

End Class

Test Your Skills

 Once the code has been compiled and run, notice that it does not work as expected, i.e. when entering the
value 11, the message ‘This is bigger than 3’ is displayed, as opposed to ‘This is bigger than 10’. See if you
can amend the error before continuing.

Page 3 of 4 © ZigZag Education 2014

The previous code did not function as expected because the order of an ‘if’ statement is important. In the previous
example, when the user entered the value 11, the message box ‘This is bigger than 3’ was displayed to the user, as
opposed to ‘This is bigger than 10’. This is because an ‘if’ statement checks all conditions in order (it does not ‘pick’
the most applicable) and as the first condition is true (10 is bigger than 3), the first message box is displayed.
Therefore, to resolve this problem, the ‘if’ statement must be reversed (as shown below):

Imports System.Console

Public Class UsingIFS

 Shared Sub Main()

 WriteLine(“Enter a number”)

 Dim y As Integer

 y = ReadLine()

 If y > 10 Then

 MsgBox("This is bigger than 10")

 ElseIf y > 6 Then

 MsgBox("This is bigger than 6")

 ElseIf y > 3 Then

 MsgBox("This is bigger than 3")

 Else

 MsgBox("Any other response")

 End If

 Main()

 End Sub

End Class

Program Output:

Page 4 of 4 © ZigZag Education 2014

Using CASE
CASE is an alternative method of selection to an ‘if’ statement. The principles of CASE are similar to that of an ‘if’
statement, and both techniques can often be used interchangeably. However, CASE is particularly useful when
testing the content of a variable. The logic of a CASE statement is shown below:

Select Case [Variable Name]
 Case [if this is the ‘case’ then]
 Do this code
 Case Else
 If all conditions are false do this code
End Select

Open Notepad or Notepad++ and type the following code (pay attention to the indentation used). Once the code has
been typed up, compile and run the program.

Imports System.Console

Public Class UsingIFS

 Shared Sub Main()

 WriteLine(“Please enter a name”)

 Dim Name As String

 Name = ReadLine()

 Select Case Name

 Case “Joe"

 MsgBox(“Your name is Joe”)

 Case “Neal"

 MsgBox(“Your name is Neal”)

 Case Else

 MsgBox(“Don’t know name..”)

 End Select

 End Sub

End Class

Program Output:

	‘If’ Statements (Selection)
	If, ElseIf and Else
	Program Output:

	Using CASE
	Program Output:

