
Page 1 of 2 © ZigZag Education 2014

Using Iteration

If you were asked to write a simple program that displays 1 to 5 in the console window, with each number on a
separate line, what would your code look like? Would it look like this?

Imports System.Console

Public Class UsingIFS

 Shared Sub Main()

 WriteLine(“1”)

 WriteLine(“2”)

 WriteLine(“3”)

 WriteLine(“4”)

 WriteLine(“5”)

 End Sub

End Class

If your code would be similar to that above, how would you make your program write 1 to 100 or even 1 to 10,000?
Let us agree that the previous example is not very efficient! So instead, amend your code so that it is the same as
the code below. Once the code has been typed up, compile and run the program.

Imports System.Console

Public Class UsingIteration

 Shared Sub Main()

 For X = 1 To 5

 WriteLine(X)

 Next X

 End Sub

End Class

Program Output:

Congratulations – you just used a ‘for loop’ to reduce the amount of code written! Most software languages have
some form of ‘for loop’; remember, the principles are the same – only the syntax changes. ‘For loops’ are helpful if
the programmer is aware of the number of times they need to execute the same code. A ‘for loop’ has a starting
number and an ending number/condition (that marks the end of the loop); this example will loop from 1 to 5 (in total
five times). A ‘for loop’ also has an increment value; by default this is set to 1. In this example, the integer variable X
will initially have the numeric value 1; once the loop executes its containing code once, X will then increment to 2 and
will repeat this process until the end condition is met (in this case when X reaches the value 5).

Page 2 of 2 © ZigZag Education 2014

While Loop
Another useful loop is the ‘Do While’ loop; again, this type of loop is found in most software languages. This loop
works by repeating the contained code while a condition is true; the moment the condition becomes false, the loop is
ended. The logic of a ‘While Loop’ is shown below:

Do While [this condition is true]
 Repeat this code
Loop

‘Do While’ loops are helpful if the programmer is unsure how many times the code will need to be repeated, as a
condition can be used instead of a fixed numeric value. An example of a ‘Do While’ loop is shown below; try it
yourself!

Imports System.Console

Public Class UsingIteration

 Shared Sub Main()

 Dim x As Integer = 1

 Do While x < 5

 WriteLine(x)

 x = x + 1

 Loop

 End Sub

End Class

This example has a condition that states the variable x must be less than 5. As x has the value 1 to begin with, the
given condition is true and thus the code will execute. The second line of code inside the loop (after the WriteLine
instruction) will increment the value of x by 1, before the loop returns to the start and checks the condition again. This
loop will continue until x has the value of 5, because at this point the condition becomes false (if x equals 5 then this
is no longer less than 5) and the code ceases to execute. This example above will only loop four times; if the
programmer wanted it to run five times then the condition needs to be amended to ‘Do While x<=5’.

Program Output:

Test Your Skills

 Replace the keyword While with Until and replace the less than symbol (<) with the more than symbol (>).
What is the difference between While and Until?

	Program Output:
	While Loop
	Program Output:

