
Page 1 of 2 © ZigZag Education 2014

What is Programming?

What is Programming?
Writing software (computer programs) is a lot like writing down the steps it takes to complete a process. These
written steps, often referred to as instructions, are passed to a computer which then processes each command in
sequence. Often, in computing, these instructions manipulate things called objects; objects may be numbers, words
and/or graphical interfaces.

Computer Rules
Always remember that a computer is dumb, but very obedient. In other words, a computer will do exactly what the
user tells it to do… even if it is not necessarily what the user intended it to do. Below are three rules to consider when
programming:

1. Computers do not make mistakes – programmers do
2. Programming will highlight the importance of ‘clarity of expression’
3. Programming instructions are processed in sequence and one at a time

High-Level Programming Languages
Most computer programming today is achieved using high-level programming languages. There are lots of these
languages available on the market and some are quite old, i.e. COBOL which was devised in the 1950s! More
modern languages include Java, VB.NET, Python, C#, JavaScript, PHP, etc.

A high-level language basically makes it easier to write programs by allowing advanced programs to be written
without any concerns in regard to computer architecture – i.e. specific CPU instructions. These languages also come
with pre-written, reusable common code – known as libraries – which help to reduce development times. An example
of a high-level language is shown below:

Code:

If x >= 5 Then

WriteLine(“Hello World”)

End IF

Explanation:

If x is greater than or equal to 5,
then write the line ‘Hello World’ to
the console window.

All you need to remember about high-level programming languages (including VB.NET) is that:
 The syntax is sort of like English
 They have pre-written code called libraries
 They ‘sit on top’ of an operating system
 They are not languages that a CPU understands

Page 2 of 2 © ZigZag Education 2014

Assembler Languages
Assembler language is ‘one step above’ a computer’s native language, machine language (binary). In an assembler
language, instructions are given human-friendly symbolic names. Unlike high-level languages, the programmer works
with basic operations/instructions that the CPU can directly perform, such as bitwise operations (i.e. AND, OR, NOT).
Remember that assembler language is very basic and therefore is impractical when writing large programs (which
are normally achieved using high-level languages). Below is an example of assembler language (notice it is not as
interpretable as the high-level language):

Code:

MOV EAX, [EBX]

Explanation:

Move the 4 bytes in memory at the
address contained in EBX into EAX

MOV [ESI+EAX], CL

Move the contents of CL into the byte
at address ESI+EAX

Machine Language
Computers only understand ‘bits’ – 0s and 1s, often referred to as binary; binary is machine language. A computer
system uses these bits to represent information, whether that is numbers, characters, pixels, etc. The computer also
uses bits to represent computer instructions; this is very difficult to do, although the pioneers of computer science
once did this! However, today most programs are written in high-level languages which are then compiled into
machine code using a compiler.

Compilers
As stated earlier, computers do not understand programs written in high-level languages, such as VB.NET and Java
(they only understand binary, 0s and 1s). High-level languages must be compiled using a compiler to convert the
source code into machine code. Every high-level programming language has a specific compiler; a compiler is a
small computer utility program usually packaged with the SDK (Software Development Kit) of the programming
language.

	What is Programming?
	What is Programming?
	Computer Rules
	High-Level Programming Languages
	Assembler Languages
	Machine Language
	Compilers

